### SECURING NETWORKS USING DEEP LEARNING BASED DETECTION SYSTEMS

#### **RITESH RATTI**



#### Agenda



2 What is Intrusion Detection System (IDS) Definition / Types / ML Based IDS

3 Deep Learning based IDS Limitations / Introduction / Datasets

4 Supervised DL based IDS Multilayer Perceptron / RNN / CNN

5 Unsupervised DL based IDS Autoencoders / GANs

### Introduction to Network Security



#### Cybercrime Expected To Skyrocket in the Coming Years

Estimated cost of cybercrime worldwide (in trillion U.S. dollars)



As of November 2022. Data shown is using current exchange rates. Sources: Statista Technology Market Outlook, National Cyber Security Organizations, FBI, IMF



23.82

### Various phases of Attacks



### Various attacks at TCP/IP layers

| Application | GET flood, Slow POST,<br>Slowloris, SQL injection,<br>INVITE flood, Slow read |
|-------------|-------------------------------------------------------------------------------|
| Transport   | SYN flood, UDP flood,<br>DNS query flood, SSL<br>MiM attack, LAND attack      |
| Network     | Smurf attack, Teardrop,<br>ICMP flood, Ping flood                             |
| Data Link   | Generating forged<br>frames, Repeated frame<br>header flood                   |
| Physical    | Disrupting or breaking<br>physical media, Signal<br>jamming, Backhoe fade     |

• Tools

- Ncrack
- Cain and Abel
- John the Ripper
- Nmap
- LOIC

What is Intrusion Detection System

- Intrusion detection is method to identify set of malicious actions that compromise the integrity, confidentiality and availability of information resources.
- Challenges
  - Detection Accuracy
  - Detection Speed
  - Dynamic Nature of Attacks
- Types
  - Supervised vs Unsupervised
  - Host Based vs Network Based
  - Packet Level vs Flow Level

## Signature Based Methods



- Predefined rules and Signature to detect attack.
- Snort is a free and open-source network intrusion prevention and detection system. It uses a rule-based language used to detect malicious activity such as DoS, Buffer overflows, stealth port scans etc.

alert icmp any any -> \$HOME\_NET any (msg:"ICMP flood"; sid:1000001; rev:1; classtype:icmp-event; detection\_filter:track by\_dst, count 500, seconds 3;)

• iptables : Command line utility to configure kernel packet filtering rules

iptables -A INPUT -p tcp -m connlimit --connlimit-above 80 -j REJECT -reject-with tcp-reset

### Supervised Learning based methods





## Unsupervised Learning based methods

Unsupervised learning-based IDS models benign behaviour of the system from the normal profile and any deviation from the known profile is considered an intrusion.

- Clustering Based
- Outlier Detection Based
- Statistical methods





## Comparison

Comparison of Supervised and Unsupervised learning based IDS

| Mothod       | Data              | Capture new    | Data Undata     | Folso Alorma    |  |
|--------------|-------------------|----------------|-----------------|-----------------|--|
| Method       | Requirement       | attacks        | Data Opuate     | raise Alarins   |  |
| Supervised   | Labelled Data is  | It is unable   | Frequent data   | Less number     |  |
| Learning     | desired that in-  | to capture the | update is       | of false alarms |  |
|              | volves huge man-  | new attacks.   | needed.         | are generated.  |  |
|              | ual labelling ef- |                |                 |                 |  |
|              | fort.             |                |                 |                 |  |
| Unsupervised | Labelled data is  | It can capture | It does not re- | High number     |  |
| Learning     | not required and  | new attacks    | quire frequent  | of false alarms |  |
|              | model can be      | and zero day   | data updates.   | are generated.  |  |
|              | build on normal   | attacks.       | acks.           |                 |  |
|              | data alone.       |                |                 |                 |  |

## Packet Level IDS vs Flow Level IDS

- Packet Level Detection
  - Capture the packet level information from network packets.
  - · Generate label data based on attack timing.
  - Capture features based on packet level information like header information, application data etc.
  - Use Deep Packet inspection on encrypted networks.
- Flow level Detection
  - Capture Flow level information on discrete time windows
    using Netflow / CICFlowMeter etc.
  - Aggregate the information for each flow and create features like bytes per sec / packets per sec / Flow IAT / .
  - Use features to build machine learning model.





# Deep Learning



## **Traditional ML Limitations**

#### Feature Selection

• Traditional approaches rely completely on feature selection hence immense time is invested in feature engineering.

#### Scalability

- Traditional approaches are non scalable with respect to big data.
- Problem of overfitting for large data sets.

#### Hyper-parameter tuning

- Required extreme tuning for hyper parameters.
- Decision of kernel for kernel based approaches.
- Selection of optimisation parameters require.

#### Hierarchical Representation

• Missing hierarchical representation in most of the algorithms.



## **Deep Learning : Introduction**

- Deep Learning is class of machine learning algorithms that
  - Use cascade of many layers for processing.
  - Each successive layer uses output from previous layer.
  - Higher level feature derived from lower level features.
- Deep Learning algorithms are based on distributed representations
  - Observed data are generated by the interactions of factors organized in layers.
- Deep Learning is a subfield of machine learning concerned with algorithms inspired by the structure and function of the brain.
- Deep learning refers to artificial neural networks that are composed of many layers.



### Datasets

| Dataset       | Year | Description                                                                                                            |
|---------------|------|------------------------------------------------------------------------------------------------------------------------|
| DARPA         | 1998 | Developed by MIT Lincoln laboratory                                                                                    |
| KDD Cup       | 1999 | Used for 3 <sup>rd</sup> KDD Competition for attack classes like DoS, Probe, U2R, R2L                                  |
| KYOTO dataset | 2006 | Traffic data from Kyoto university Honeypots                                                                           |
| ITOC-CDX      | 2009 | The Cyber Research Centre Datasets that provides a comprehensive set of log data under ongoing "sophisticated" attacks |
| NSL-KDD       |      | This dataset is improved version of KDD dataset.                                                                       |
| ADFA Dataset  | 2013 | For host-based intrusion detection system (HIDS).                                                                      |
| UNSW-NB15     | 2015 | Developed by University of New South Wales, Australia using Bro IDS.                                                   |
| CICIDS-2018   | 2018 | Recent data developed by Canadian Institute of Cyber Security                                                          |
| CIC-DDoS-2019 | 2019 | DDoS attack for various Networking Protocols                                                                           |

## Deep Learning based methods

- Supervised
- Unsupervised



# Supervised DL based methods

## **Deep Neural Network**

- It is based on back propagation algorithm and contains input, output and various intermediate layers.
- Neurons are basic computation entities.
- Activation function is calculated at each layer in feed forward fashion and Error is propagated backwards for weight normalization.
- Adjust weight using gradient descent algorithm where it increment or decrement the weight vector by the input vector scaled by the residual error and the learning rate.
- Output layer is used to predict the outcome as attack or non-attack.





## **Convolutional Neural Network**

- Connection patterns are inspired by visual cortex in CNN.
- Convolutional layers are set of learnable filters where every filter is applied along width and height of 2-D vector. Pooling operation is used to reduce the learnable parameters.
- Various layers of convolutional networks are used and followed by fully connected layer to classify the input record into benign or attack.



Input Layer

## **Recurrent Neural Network**

• This is Neural Network with directed cycles.

- It is based on recursive operation where Output of next layer become input to previous layer.
- RNNs capture patterns in time series data, Constrained by shared weights across neurons
- Recurrent Neural Network are natural way to model sequential data.
- Usage of intermediate memory gate.
  - Information gets into the cell whenever its write gate is on.
  - The information stays in the cell so long as its keep gate is on.
  - Information can be read from the cell by turning on its read gate.

Unsupervised DL based methods

## Auto Encoder

- Autoencoder are unsupervised machine learning technique in which we leverage neural networks for representation learning.
- Encoder that maps the input into the code, and a decoder that maps the code to a reconstruction of the input.
- Use Cases :
  - · Dimensionality Reduction
  - Representation Learning for classification tasks

#### **Reconstruction Error Based**

Autoencoder learn the representation for Normal Traffic . During execution time predict the Attack if reconstruction error is higher than threshold.

#### **Triplet Loss Based**

Learn representation from 2 encoders specifically for Attack and Normal data. Use Triplet loss function for attack identification.



$$Loss = \sum_{i=1}^{N} \left[ \|f_i^a - f_i^p\|_2^2 - \|f_i^a - f_i^n\|_2^2 + \alpha \right]_+$$

## **Generative Adversarial Networks**

- Generative Adversarial Network (GAN) is a novel generative model, by learning the data distribution and represent it as latent variables
- The *Generative Network* generates candidates while the Discriminative Network evaluates them.
- The generative network's training objective is to increase the error rate of the discriminative network. This way the generator trains based on whether it succeeds in fooling the discriminator.

#### **Oversampling Strategy**

Malicious packets are extremely less than normal packets GAN can be used for Oversampling in case of NIDS



## Thanks